Functional PEGs

Acetal-PEG-OH/Diethoxy-PEG-OH

Diethyl acetal-PEG-OH (Acetal-PEG-OH) is a linear heterobifunctional PEG reagent with an acetal and OH group. It is a useful reagent for bioconjugation with a PEG spacer. Acetal can be easily reduced to aldehyde under acidic condition (pH 4.0). Acetal-PEG-OH may be used to introduce aldehyde in PEG copolymers. The aldehyde group can react with amine and thiol group for bioconjugation.

(11334)
- Molecular weight: 1000, 2000, 3500, 5000, 10K
- Package size: 100 mg, 500 mg, 1 g

Amine alkynE-PEG-COOH

Amine and Alkyne conjugated PEG-carboxylic acid (Amine alkynE-PEG-COOH, Alkyne amine-PEG-COOH) is a trifunctional PEG derivative, which has amine and alkyne group sharing one end and -COOH group on the other end.

Amine group can react with carboxylic acid and its active esters, and isocyanates. It can also react with carbonyl such as ketone and aldehyde.

Alkyne were used to react azide group “click” chemistry in mild condition, which is very useful for bioconjugation.

COOH can react with amine or OH containing entities.
(10352)
- Molecular weight: 1000, 2000, 3400, 5000, 10K
- Package size: 100 mg, 1 g

Amine Alkyne-PEG-OH

Amine and Alkyne conjugated PEG-OH (Amine Alkyne-PEG-OH) is a trifunctional PEG derivative, which has amine and alkyne group sharing one PEG end and hydroxyl group on the other end. Multiple entities may be linked together by NSP’s trifunctional PEGs.

Amine group can react with carboxylic acid and its active esters, and isocyanates. It can also react with carbonyl such as ketone and aldehyde.

Alkyne were used to react azide group “click” chemistry in mild condition, which is very useful for bioconjugation.

OH can be further derivatized for bioconjugation.
(10337)
- Molecular weight: 2000, 3400, 5000, 10K
- Package size: 100 mg, 1 g

Amine-PEG3-Amine

1,11-Diamine-3,6,9-trioxaundecane (Amine-PEG3-Amine, NH2-PEG3-NH2), is a linear bifunctional monodisperse PEG crosslinking reagent with a reactive primary amine or NH2 group that can rapidly react with activated carboxylic acid or carboxyl groups such as NHS ester to form stable amide bonds.

(11196)
- Package size: 500 mg, 1 g

Azide amine-PEG-COOH

Amine and azide conjugated PEG-carboxylic acid (Amine azide-PEG-COOH, azide amine-PEG-COOH) is a trifunctional PEG derivative, which has amine and azide group sharing one end and -COOH group on the other end.

Amine group can react with carboxylic acid and its active esters, and isocyanates. It can also react with carbonyl such as ketone and aldehyde.

Azide were used to react azide group “click” chemistry in mild condition, which is very useful for bioconjugation.

COOH can react with amine or OH containing entities.
(10379)
- Molecular weight: 1000, 2000, 3400, 5000, 10K
Azide Amine-PEG-OH

Azide and amine conjugated PEG-OH (Azide amine-PEG-OH) is a trifunctional PEG derivative, which has azide and amine group sharing one PEG end and hydroxyl group on the other end. Multiple entities may be linked together by NSP’s trifunctional PEGs.

Amine group can react with carboxylic acid and its active esters, and isocyanates. It can also react with carbonyl such as ketone and aldehyde.

Azide were used to react azide group “click” chemistry in mild condition, which is very useful for bioconjugation.

OH can be further derivatized for bioconjugation.

Molecular weight:1000, 2000, 3400, 5000, 10K

Package size:100mg, 1g

BIO-PEG-FITC

Biotin-PEG-FITC (BIO-PEG-FITC) is a heterofunctional linker, which has biotin group on one end, and fluorescent probe (green) on the other end for labeling. Biotin can bind to avidin and streptavidin with high specificity and affinity.

Molecular weight:1000, 2000, 3400, 5000

Package size:50 mg

BIO-PEG-RhB

Biotin-PEG-Rhodamine (BIO-PEG-RhB) is a heterofunctional linker, which has Biotin group on one end, and fluorescent probe (red) on the other end for labeling. Biotin group can react with amine-containing groups.

Molecular weight:1000, 2000, 3400, 5000

Package size:50 mg

Biotin-PEG2-Maleimide

Biotin-PEG2-Maleimide (BIO-PEG2-MAL) is a linear heterobifunctional PEGylation reagent with a biotin and a maleimide. It is a useful crosslinking, bioconjugation reagent with a PEG spacer. Biotin can bind to avidin and streptavidin with high specificity and affinity. Maleimide can conjugate with thiol, SH, sulfhydryl or mercapto group to form a disulfide bond.

Molecular weight:1000, 2000, 3400, 5000

Package size:25mg, 50mg, 100mg

Boc-amine alkyne-PEG-COOH

Boc-protected amine and alkyne conjugated PEG-carboxylic acid (Boc-amine alkyne-PEG-COOH, Alkyne Boc-amine-PEG-COOH) is a trifunctional PEG derivative, which has Boc-protected amine and alkyne group sharing one end and -COOH group on the other end.

tBoc-amine can be deprotected by acid (TFA) to free amine, which react with carboxylic acid and its active esters, and isocyanates. It can also react with carbonyl such as ketone and aldehyde.

Alkyne were used to react azide group “click” chemistry in mild condition, which is very useful for bioconjugation.

COOH can react with amine or OH containing entities.

Molecular weight:1000, 2000, 3400, 5000

Package size:100mg, 1g
Boc-amine alkyne-PEG-OH
Boc-protected amine and alkyne conjugated PEG-OH (Boc-amine alkyne-PEG-OH) is a trifunctional PEG derivative, which has amine and alkyne group sharing one PEG end and hydroxyl group on the other end. Multiple entities may be linked together by NSP's trifunctional PEGs.

Boc-amine can be deprotected by acid (TFA) to free amine, which react with carboxylic acid and its active esters, and isocyanates. It can also react with carbonyl such as ketone and aldehyde.

Alkyne were used to react azide group “click” chemistry in mild condition, which is very useful for bioconjugation.

OH can be further derivatized for bioconjugation.

(10496)
- Molecular weight: 000, 2000, 3400, 5000, 10K
- Package size: 100mg, 1g

Boc-amine Azide-PEG-COOH
Boc protected-amine and azide conjugated PEG-carboxylic acid (Boc-amine Azide-PEG-COOH, Azide Boc-amine-PEG-COOH) is a trifunctional PEG derivative, which has amine and alkyne group sharing one end and -COOH group on the other end.

tBoc-amine can be deprotected by acid (TFA) to free amine, which react with carboxylic acid and its active esters, and isocyanates. It can also react with carbonyl such as ketone and aldehyde.

Azide were used to react azide group “click” chemistry in mild condition, which is very useful for bioconjugation.

COOH can react with amine or OH containing entities.

(10393)
- Molecular weight: 1000, 2000, 3400, 5000, 10K
- Package size: 100mg, 1g

Boc-amine azide-PEG-OH
Azide and Boc-protected amine conjugated PEG-OH (Boc-amine azide-PEG-OH) is a trifunctional PEG derivative, which has azide and amine group sharing one PEG end and hydroxyl group on the other end. Multiple entities may be linked together by NSP's trifunctional PEGs.

Boc-amine can be deprotected by acid (TFA) to free amine, which react with carboxylic acid and its active esters, and isocyanates. It can also react with carbonyl such as ketone and aldehyde.

Azide were used to react azide group “click” chemistry in mild condition, which is very useful for bioconjugation.

OH can be further derivatized for bioconjugation.

(10509)
- Molecular weight: 1000, 2000, 3400, 5000, 10K
- Package size: 100mg, 1g

DBCO-PEG-COOH
DBCO (dibenzocyclooctyne) PEG acid or DBCO-PEG-carboxylic acid (DBCO-PEG-COOH) is a heterobifunctional reactive PEG derivative that can go Click Chemistry reaction without a need of any metal catalysts. The strain-promoted 1,3-dipolar cycloaddition of cyclooctynes and azides, also termed as the Cu-free click reaction, is a bioorthogonal reaction that enables the conjugation of two molecules in aqueous solution. DBCO PEG derivatives possess fast kinetics and stability in aqueous buffer. DBCO reagents can be used to label azide-modified biomolecules spontaneously without the need for toxic Cu catalysts. Carboxylic acid group, on the other hand, can be activated to react with amines, hydroxy and other functional groups.

(11062)
- Molecular weight: 1000, 2000, 3400, 5000, 10K
- Package size: 50mg, 100mg

FITC-PEG-NHS
FITC-PEG-succinimidyl ester (FITC-PEG-NHS) is a heterofunctional linker, which has active succinimidyl ester group on one end, and fluorescent probe (green) on the other end for labeling. NHS group can react with amine-containing groups.

(4530)
- Molecular weight: 1000, 2000, 3400, 5000
- Package size: 50mg
Fmoc amine azide-PEG-COOH
Fmoc protected amine and azide conjugated PEG-carboxylic acid (Fmoc amine azide-PEG-COOH, azide Fmoc amine-PEG-COOH) is a trifunctional PEG derivative, which has Fmoc-protected amine and azide group sharing one end and -COOH group on the other end.

Fmoc protected amine can be deprotected by piperidine to free amine which can react with carboxylic acid and its active esters, and isocyanates. It can also react with carbonyl such as ketone and aldehyde.

Azide were used to react azide group “click” chemistry in mild condition, which is very useful for bioconjugation.

COOH can react with amine or OH containing entities.

Molecular weight: 1000, 2000, 3400, 5000
Package size: 100mg, 1g

Folate-PEG-Amine
NSP offers heterobifunctional Folate-PEG-Amine (Folate-PEG-NH2, Folic acid-PEG-NH2) with high quality. Folic acid, or vitamin B9, can selectively bind to folate receptor, while Primary amine can react with a variety of functional groups such as succinimidyl ester (NHS), carboxylic acids (COOH), anhydride and many others. The PEG moiety in the heterofunctional PEG derivatives provides water solubility, biocompatibility, and flexibility. This reaction allows attachment of folic acid ligand to proteins, antibodies, peptides or particle surfaces. Folic acid functionalized substrates have been used for targeted drug delivery, imaging, and bioassay development.

Molecular weight: 1000, 2000, 3500, 5000, 10K
Package size: 50mg, 100 mg

Folate-PEG-COOH
NSP offers heterobifunctional Folate PEG Acetic Acid products (Folate-PEG-COOH, Folic acid-PEG-COOH) with high quality. Folic acid, or vitamin B9, can selectively bind to folate receptor, while the carboxylic group can reactive with amine-containing moieties. The PEG moiety in the heterofunctional PEG derivatives provides water solubility, biocompatibility, and flexibility.

Molecular weight: 1000, 2000, 3500, 5000, 10K
Package size: 50mg, 100 mg

Folate-PEG-Maleimide
NSP offers heterobifunctional Folate-PEG-Maleimide (Folate-PEG-Mal, Folic acid-PEG-maleimide) with high quality. Folic acid, or vitamin B9, can selectively bind to folate receptor, while maleimide can react with sulfhydryl (-SH) in pH 6.5-7.5 quickly and efficiently. The PEG moiety in the heterofunctional PEG derivatives provides water solubility, biocompatibility, and flexibility. This reaction allows attachment of folic acid ligand to proteins, antibodies, peptides or particle surfaces. Folic acid functionalized substrates have been used for targeted drug delivery, imaging, and bioassay development.

Molecular weight: 1000, 2000, 3500, 5000, 10K
Package size: 50mg, 100 mg

Folate-PEG-NHS
NSP offers heterobifunctional Folate PEG NHS products (Folate-PEG-NHS, Folic acid-PEG-NHS) with high quality. Folic acid, or vitamin B9, can selectively bind to folate receptor, while the NHS ester can reactive with amine-containing moieties in alkaline conditions quickly and efficiently. This reaction allows attachment of folic acid ligand to proteins, antibodies, peptides or particle surfaces. The PEG moiety in the heterofunctional PEG derivatives provides water solubility, biocompatibility, and flexibility. Folic acid functionalized substrates have been used for targeted drug delivery, imaging, and bio-assay development.

Molecular weight: 1000, 2000, 3500, 5000, 10K
Package size: 50mg, 100 mg

Folate-PEG-OH
NSP offers heterobifunctional Folate PEG Hydroxyl products (Folate-PEG-OH, Folic acid-PEG-OH) with high quality. Folic acid, or vitamin B9, can selectively bind to folate receptor, while the OH group can be further modified for bioconjugation. The PEG moiety in the heterofunctional PEG derivatives provides water solubility, biocompatibility, and flexibility.
HO-PEG-COOtBu

HO-PEG-COOtBu is a linear heterobifunctional PEG derivative with one hydroxyl group and one carboxylate tert-butyl ester. The protected carboxyl (COOH) prevents self coupling or polymerization under standard acid/amine or acid/hydroxyl coupling conditions. The protected acid can be regenerated by acidic or basic hydrolysis.

IA-PEG-IA

Iodoacetyl-poly(ethylene glycol)-iodoacetyl (IA-PEG-IA) is a linear bifunctional crosslinking PEG reagent with one iodoacetyl at both ends of PEG that can be used to modify biomolecules or other materials via their available thiol groups. Iodine group can be easily replaced by thiol group to form a stable carbon thiol bond.

LA-PEG-BIO

Lipoic acid-PEG-Biotin (LA-PEG-BIO) is a heterofunctional linker, which has lipoic group on one end for surface modification, and biotin group on the other end for avidin. Lipoic acid, also known as thioctic acid, is an important bioactive molecule participating in various biological processes. PEG functionalized lipoic acid can be used to bind to metallic particle or film surface with its -S-S- bond. Lipoic acid group has high affinity to metallic surfaces and have been widely used for gold nanoparticles and quantum dots surfaces. PEGylated lipoic acid is water soluble and can be used directly in aqueous buffer.

LA-PEG-COOH

Lipoic acid-PEG-COOH (LA-PEG-COOH) is a heterofunctional linkers for surface modification. Lipoic acid, also known as thioctic acid, is an important bioactive molecule participating in various biological processes. PEG functionalized lipoic acid can be used to bind to metallic particle or film surface with its -S-S-bond. Lipoic acid group has high affinity to metallic surfaces and have been widely used for gold nanoparticles and quantum dots surfaces. PEGylated lipoic acid is water soluble and can be used directly in aqueous buffer.

LA-PEG-MAL

Lipoic acid-PEG-Maleimide (LA-PEG-Mal) is a heterofunctional linker, which has lipoic group on one end for surface modification, and maleimide group on the other end for bioconjugation. Lipoic acid, also known as thioctic acid, is an important bioactive molecule participating in various biological processes. PEG functionalized lipoic acid can be used to bind to metallic particle or film surface with its -S-S-bond. Lipoic acid group has high affinity to metallic surfaces and have been widely used for gold nanoparticles and quantum dots surfaces. PEGylated lipoic acid is water soluble and can be used directly in aqueous buffer.
nanoparticles and quantum dots surfaces. PEGylated lipoic acid is water soluble and can be used directly in aqueous buffer.

LA-PEG-NH2

Lipoic acid-PEG-Amine (LA-PEG-NH2) is a heterofunctional linker, which has lipoic group on one end for surface modification, and amine group on the other end. Lipoic acid (LA), also known as thioctic acid, is an important bioactive molecule participating in various biological processes. PEG functionalized lipoic acid can be used to bind to metallic particle or film surface with its -S-S-bond. Lipoic acid group has high affinity to metallic surfaces and have been widely used for gold nanoparticles and quantum dots surfaces. PEGylated lipoic acid is water soluble and can be used directly in aqueous buffer.

LA-PEG-NHS

Lipoic acid-PEG-NHS (LA-PEG-NHS) is a heterofunctional linker, which has lipoic group on one end for surface modification, and amine-reactive N-hydroxysuccinimide esters (NHS) group on the other end for bioconjugation. Lipoic acid, also known as thioctic acid, is an important bioactive molecule participating in various biological processes. PEG functionalized lipoic acid can be used to bind to metallic particle or film surface with its -S-S-bond. Lipoic acid group has high affinity to metallic surfaces and have been widely used for gold nanoparticles and quantum dots surfaces. PEGylated lipoic acid is water soluble and can be used directly in aqueous buffer.

LA-PEG-OH

Lipoic acid-PEG-hydroxyl (LA-PEG-OH) is a heterofunctional linkes for surface modification. Lipoic acid, also known as thioctic acid, is an important bioactive molecule participating in various biological processes. PEG functionalized lipoic acid can be used to bind to metallic particle or film surface with its -S-S-bond. Lipoic acid group has high affinity to metallic surfaces and have been widely used for gold nanoparticles and quantum dots surfaces. PEGylated lipoic acid is water soluble and can be used directly in aqueous buffer.

MAL-PEG-FITC

Maleimide-PEG-FITC (MAL-PEG-FITC) is a heterofunctional linker, which has maleimide group on one end for conjugation of thiol-containing ligands, and fluorescent probe (green) on the other end for labeling.

MAL-PEG-RhB

Maleimide-PEG-Rhodamine (MAL-PEG-RhB) is a heterofunctional linker, which has maleimide group on one end for conjugation of thiol-containing ligands, and fluorescent probe (red) on the other end for labeling.

MPEG-Iodoyacetyl

Methoxy poly(ethylene glycol)-Iodolacetyl (MPEG-IA) is one type of linear monofunctional PEG acid reagents. PEG-IA can be used to react with thiol groups.

Haloacetyl reaction chemistry: The most commonly used haloacetyl crosslinkers contain an iodoacetyl or a bromoacetyl group. Haloacetylts react with sulfhydryl groups at physiologic pH. The reaction of the iodoacetyl group proceeds by nucleophilic substitution of iodine with a sulfur atom from a sulfhydryl group, resulting in a stable thioether linkage.
mPEG-Mesylate

mPEG-Mesylate is a linear monofunctional PEG reagent with a mesyl, also called methanesulfonyl, which is a good leaving group for nucleophilic substitution reaction (SN2).

MPEG-Silane

MPEG-silane is a linear monofunctional methyl ether PEG with a reactive tri-ethoxy silane group. Silane PEG is often used to PEGylate glass and hydroxylated surfaces and particles.

N3-PEG-BIO

Azide-PEG-Biotin (N3-PEG-BIO) is a linear heterobifunctional PEG reagent with an azide and a biotin group on the PEG ends. It is a useful crosslinking reagent with a PEG spacer. Azide can be used for molecule conjugation by click chemistry, and biotin can bind to streptavidin. Azide-PEG-biotin may be used for bioconjugation, drug delivery, PEG hydrogel, crosslinker, and surface functionalization.

High quality azide-PEG-biotin (N3-PEG-BIO) with a standard quality specification of >90% Substitution.

Heterobifunctional PEG reagents from NSP are generally employed as crosslinking agents or as spacers between two different chemical entities. The PEG moiety in the heterofunctional PEG derivatives provides water solubility, biocompatibility, and flexibility. Applications are especially geared towards the development of antibody drug conjugates.

N3-PEG-LA

Azide-PEG-Lipoic acid (N3-PEG-LA) is a linear heterobifunctional PEG reagent with an azide and a lipoic acid group on the PEG ends. It is a useful crosslinking reagent with a PEG spacer. Azide can be used for molecule conjugation by click chemistry, and lipoic acid can be used to bind to metallic particle or film surface with its S-S-bond. Azide-PEG-Lipoic acid may be used for bioconjugation, drug delivery, PEG hydrogel, crosslinker, and surface functionalization.

Lipoic acid group has high affinity to metallic surfaces and have been widely used for gold nanoparticles and quantum dots surfaces. PEGylated lipoic acid is water soluble and can be used directly in aqueous buffer. High quality azide-PEG-lipoic acid (N3-PEG-LA) with a standard quality specification of >90% Substitution.

Heterobifunctional PEG reagents from NSP are generally employed as crosslinking agents or as spacers between two different chemical entities. The PEG moiety in the heterofunctional PEG derivatives provides water solubility, biocompatibility, and flexibility. Applications are especially geared towards the development of antibody drug conjugates.
N3-PEG-Mal

Azide-PEG-maleimide (N3-PEG-Mal) is a linear heterobifunctional PEG reagent with an azide and a maleimide group on the PEG ends. It is a useful crosslinking reagent with a PEG spacer. Azide can be used for molecule conjugation by click chemistry, and maleimide can react with thiol groups. Azide-PEG-maleimide may be used to for bioconjugation, drug delivery, PEG hydrogel, crosslinker, and surface functionalization.

High quality azide-PEG-maleimide (N3-PEG-Mal) with a standard quality specification of >90% Substitution.

Heterobifunctional PEG reagents from NSP are generally employed as crosslinking agents or as spacers between two different chemical entities. The PEG moiety in the heterofunctional PEG derivatives provides water solubility, biocompatibility, and flexibility. Applications are especially geared towards the development of antibody drug conjugates.

N3-PEG-SH

Azide-PEG-thiol (Azide-PEG-SH, N3-PEG-SH) is a linear heterobifunctional PEG reagent with an azide and a thiol group on the PEG ends. It is a useful crosslinking reagent with a PEG spacer. Azide can be used for molecule conjugation by click chemistry, and thiol can react with -SH or maleimide groups. Azide-PEG-thiol may be used to for bioconjugation, drug delivery, PEG hydrogel, crosslinker, and surface functionalization.

High quality azide-PEG-thiol (N3-PEG-SH) with a standard quality specification of >90% Substitution.

Heterobifunctional PEG reagents from NSP are generally employed as crosslinking agents or as spacers between two different chemical entities. The PEG moiety in the heterofunctional PEG derivatives provides water solubility, biocompatibility, and flexibility. Applications are especially geared towards the development of antibody drug conjugates.

N3-PEG2-NH2

8-Azido-3,6-dioxaundecan-1-amine (Azide-PEG2-Amine, N3-PEG-NH2) is a mono-dispersed heterobifunctional PEG with an azide and an amine group on the PEG ends. It is a useful crosslinking reagent with a PEG spacer. Azide can be used for molecule conjugation by click chemistry, and amine can react with carboxylic acid or NHS ester. The product is typically provided in HCl salt form. Azide-PEG-Amine may be used to for bioconjugation, drug delivery, PEG hydrogel, crosslinker, and surface functionalization.

NH2-PEG-COOtBu

Amine-PEG-tert Butyl protected carboxylic acid (NH2-PEG-COOtBu) is a linear heterobifunctional PEG reagent with one amine and one tertiary butyl ester protected carboxylic acid. It is a useful crosslinking reagent with a PEG spacer. The protected acid can be regenerated by mild acidic or basic conditions. Typically, the product is offered as its HCl or TFA salt.

RhB-PEG-NHS

Rhodamine-PEG-succinimidyl ester (RhB-PEG-NHS) is a heterofunctional linker, which has active succinimidyl ester group on one end, and fluorescent probe (red) on the other end for labeling. NHS group can react with amine-containing groups.
RhB-PEG-SH

Thiol-PEG-Rhodamine (RhB-PEG-SH) is a heterofunctional linker, which has thiol group on one end for conjugation of thiol-containing ligands, and fluorescent probe (red) on the other end for labeling.

- Molecular weight: 1000, 2000, 3400, 5000
- Package size: 50 mg

Silane-PEG-Acrylate

Silane-PEG-Acrylate (Acrylate-PEG-Silane, Silane-PEG-Acr, or Acrl-PEG-Silane) is a linear heterobifunctional PEG reagent with an acrylate and a silane group. It is a useful crosslinking reagent with a PEG spacer. Acrylate can polymerize with UV light or radical initiator to form PEG hydrogel, and silane can react with glass or other hydroxylated surfaces.

- Molecular weight: 1000, 2000, 3500, 5000, 10K
- Package size: 200 mg, 500 mg, 1 g

Silane-PEG-Biotin

Silane-PEG-Biotin is a linear heterobifunctional PEG reagent with a biotin and an silane.

- It is a useful crosslinking or bioconjugation reagent with a PEG spacer.
- Biotin can bind to avidin and streptavidin with high specificity and affinity. Silane can be used to react with glass, silica, or other hydroxylated surfaces.

- Molecular weight: 1000, 2000, 3400, 5000, 10K
- Package size: 100 mg, 1 g, 5 g

Silane-PEG-COOH

Ethoxy silane functionalized polyethylene glycol, silane PEG (PEG-Si) is a surface reactive PEG derivative that can be used to modify glass, silica and other surfaces via the reaction between hydroxyl group and ethoxyl/methoxyl silane. PEGylation can greatly suppress the non-specific binding of charged molecules to the modified surfaces. And they have wide applications for medical device, biomems or biocompatible material development.

- Molecular weight: 1000, 2000, 3400, 5000, 10K
- Package size: 100 mg, 1 g, 5 g

Silane-PEG-Mal

Silane-PEG-Maleimide (Silane-PEG-Mal) is a linear heterobifunctional PEG reagent with a maleimide and a silane.

- It is a useful crosslinking reagent with a PEG spacer. Maleimide reacts with thiol, SH, sulphydryl or mercapto, and silane group can react with glass or other hydroxylated surface or particle.
- It may be used to introduce thiol or cysteine reactive functional group on hydroxylated nanoparticle, microsphere, self-assembled monolayer or metal chips.
- PEGylation can greatly suppress the non-specific binding of charged molecules to the modified surfaces. And they have wide applications for medical device, biomems or biocompatible material development.
Silane-PEG-Silane

- Molecular weight: 1000, 2000, 3400, 5000, 10K
- Package size: 100mg, 1g, 5g

Silane-PEG-silane is a linear bifunctional PEG with two reactive triethoxy silane groups.

Silane PEG is often used to PEGylate glass and hydroxylated surfaces and particles.